Significant Incidents in Human Spaceflight -

WHAT IS IT?

Human spaceflight grew out of the Cold War between the United States and the Soviet Union. Competitive struggles laid the groundwork with advances in high altitude flight, rocketry, and human performance. Human spaceflight reached its first defining success more than half a century ago, when Cosmonaut Yuri Gagarin became the first man to orbit the Earth in April 1961. In November 2000, a multi-national crew moved aboard the International Space Station. By November 2011, the former Cold War rivals had collaborated to surpass 10 years of continuous presence in space. Now a new record of continuous space habitation is established daily.

The Significant Incidents and Close Calls in Human Spaceflight chart presents a visual overview of major losses and close calls spanning the history of human spaceflight. It heightens awareness of the risks that must be managed as human spaceflight continues to advance.

HOW DOES IT WORK?

Events on the chart are organized by flight phase and ordered chronologically within each phase. Each event is represented by a small box which includes the mission name, date, a brief description of the incident and any significant result, such as injury or loss of life.

Three types of important events are highlighted: loss of crew, crew injury, and related or recurring events. Events with one or more crew fatalities are considered a loss of crew and highlighted in red. Crew injury or illness and/or loss of vehicle or mission is designated by orange shading. Related or recurring events are grouped together and set apart by yellow shaded boxes. These events have occurred repeatedly, are similar in nature, and may continue to occur today.

WHY DO WE HAVE IT?

The Significant Incidents and Close Calls in Human Spaceflight chart is maintained by NASA Johnson Space Center's Flight Safety Office to raise awareness of lessons that have been learned through the years. It is a visible reminder of the risks inherent in human spaceflight. It is intended to spark an interest in past events, inspire people to delve into lessons learned, and encourage continued vigilance. It can aid in developing "what-if" scenarios and in ensuring the lessons of history are incorporated into new designs. It is being distributed as widely as possible in the hope that future accidents may be prevented.

WHAT IS THE BONDARENKO STORY?

Two fatal events, the Soviet altitude chamber oxygen fire and the Apollo 1 terminal countdown demonstration test, highlight the importance of sharing information. On March 23, 1961 Soviet cosmonaut Valentin Bondarenko lost his life after being severely burned in an altitude chamber fire. The incident occurred during a routine training exercise, when Bondarenko attempted to throw an alcohol swab into a waste basket, but hit the edge of a hot plate instead. The oxygen-rich environment quickly ignited. Rescue efforts were thwarted because internal pressure prevented rescuers from opening the chamber's inwardly swinging hatch for several minutes. By the time the pressure was released and the hatch could be opened, Bondarenko had been hopelessly burned. He died hours later.

Six years later, three U.S. astronaut's lives were lost in a fire during the terminal countdown demonstration test. During the test, the Apollo crew module contained an oxygen-rich atmosphere. An electrical short caused a fire that spread quickly throughout the cabin. Again, rescue efforts were delayed due to the buildup of pressure behind an inwardly opening hatch. Unlike the Soviet altitude chamber oxygen fire, the crew did not die due to burns from the fire, but from cardiac arrest caused by smoke inhalation. However, in both the Bondarenko tragedy and the Apollo 1 incident, high levels of oxygen caused the fires to spread rapidly, and pressure against inward opening hatches slowed rescue efforts. Neither cabin was equipped with effective fire-suppression equipment.

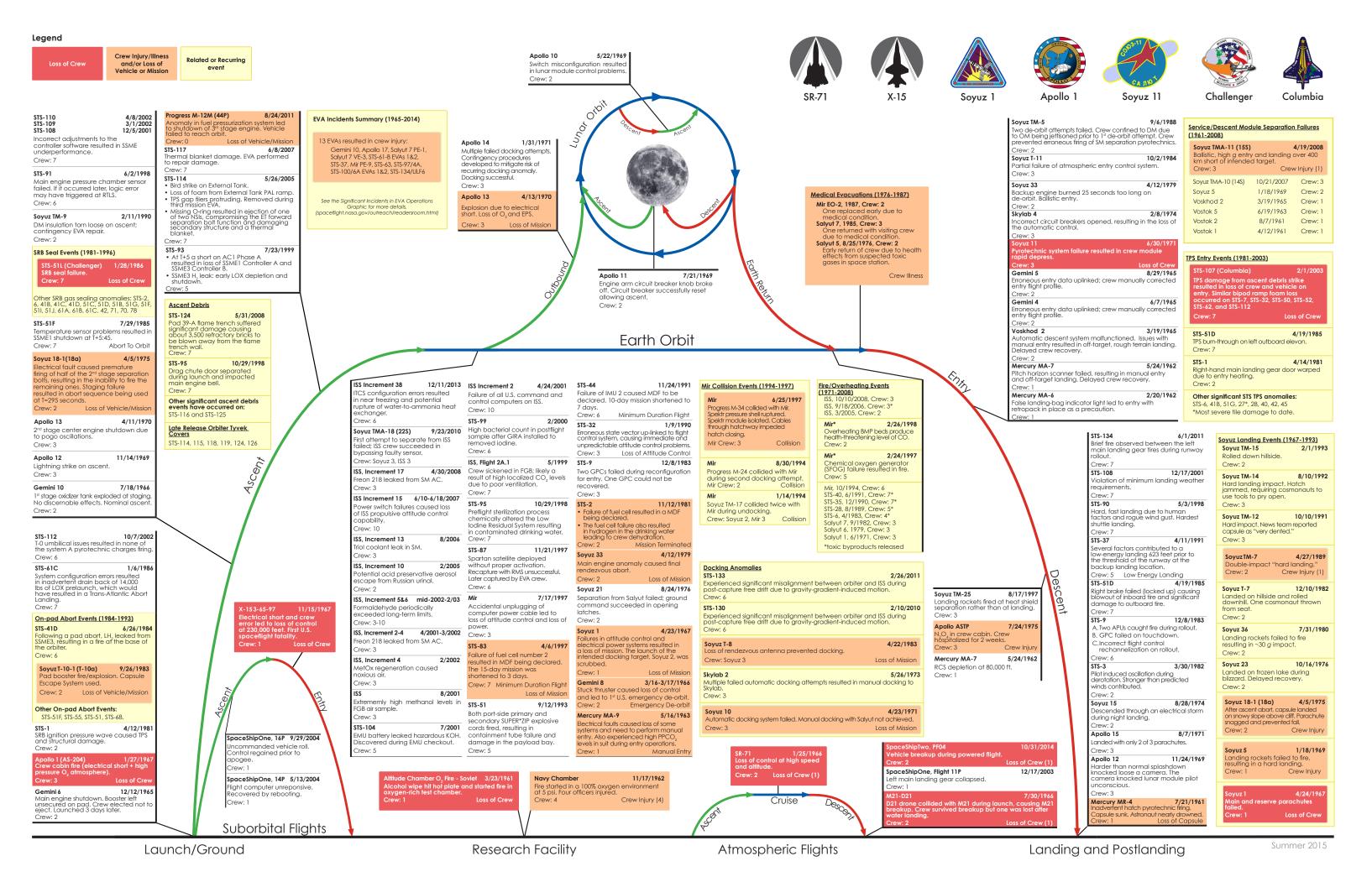
Information about the Bondarenko incident was not known in the U.S. until 1986 – more than 20 years later. Would access to this information have led to design changes that saved lives? Although that question can never be answered, these events underscore the importance of sharing information in the effort to prevent future tragedies.

Research & Infographic Design: Dennis Pate & Joanna Opaskar **Publication Specialist:** Ashley Patterson

Graphic Artist: Faisal Ali Team Lead: Bill Wood

Executive Sponsor: Nigel Packham, Ph.D.

Other Contributors:
Robert Bobola
David Bradt
Everette Cole
Andy Foster


Patrick Huckaby

Rufus Jackson
Gary Johnson
Tim Kassebaum
Phillip Lewis
Stuart Monteleone
Jennifer Reister

David Salvador Rusty Scheier Meredith Smith Paula Smith William Stockton Keith Tischler

Amaris Vigil Edward Weisblatt Erin Stevenson

The JSC Flight Safety Office maintains the Significant Incidents and Close Calls in Human Spaceflight graphic to provide continuing visibility of the risks inherent with space exploration and to provide engineers with a summary of past experience. It is hoped this information will be used to learn from the past and make present and future missions safer.

Abbreviations and Acronyms

AC Air Conditioner

APU **Auxiliary Power Unit**

Microimpurities Removal System (Russian)

CDRA Carbon Dioxide Removal System

CMG Control Management Gyroscope

CO Carbon Monoxide

 CO_2 Carbon Dioxide DM

Descent Module FMU

Extravehicular Mobility Unit

EPS Electrical Power System

ΕV Extravehicular

FGB Functional Cargo Block (Russian)

Flight Safety Office FSO

GIRA Galley Iodine Removal Assembly

GPC. General Purpose Computer

GPS Global Positioning System

Hydrogen

Inertial Measurement Unit

ISS International Space Station

Internal Thermal Control System

Potassium Hydroxide

Liquid Hydrogen

LOC Loss of Crew

LOV Loss of Vehicle

LOX Liquid Oxygen

Minimum Duration Flight

MetOx Metal Oxide

MMOD Micro-Meteoroid Orbital Debris

Nitrogen Tetroxide

NSI NASA Standard Initiator

02 Oxygen

Orbital Module

OSMA Office of Safety & Mission Assurance

Protuberance Air Load

Primary Avionics Software System

PPCO₂ Partial Pressure of Carbon Dioxide

Reaction Control System/Subsystem

Remote Manipulator System

Return to Launch Site

Solid Fuel Oxygen Generator

Safety & Mission Assurance

Service Module

Solid Rocket Booster

Space Shuttle Main Engine

SSP Space Shuttle Program

STS Space Transportation System

TPS Thermal Protection System

U.S. United States

Visit the NASA Human Spacefliaht Readers Room (http://spaceflight.nasa.gov/outreach/readersroom.html) for the latest version of the Significant Incidents and Close Calls in Human Spacefliaht chart.

Nigel Packham, Ph.D., NASA

Manager, JSC S&MA Flight Safety Office nigel.packham-1@nasa.gov

Bill Stockton

SAIC Lead, FSO Support Team william.p.stockton@nasa.gov

Dennis Pate, SAIC

Assessments Specialist, FSO Support Team dennis.w.pate@nasa.gov